On a finite difference scheme for blow up solutions for the Chipot-Weissler equation

نویسندگان

  • Houda Hani
  • Moez Khenissi
چکیده

— In this paper, we are interested in the numerical analysis of blow up for the Chipot-Weissler equation ut = ∆u+ |u| u− |∇u| with Dirichlet boundary conditions in bounded domain when p > 1 and 1 ≤ q ≤ 2p p+ 1 . To approximate the blow up solution, we construct a finite difference scheme and we prove that the numerical solution satisfies the same properties of the exact one and blows up in finite time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

Singularity formation and blowup of complex-valued solutions of the modified KdV equation

The dynamics of the poles of the two–soliton solutions of the modified Korteweg–de Vries equation ut + 6u ux + uxxx = 0 are determined. A consequence of this study is the existence of classes of smooth, complex–valued solutions of this equation, defined for−∞ < x < ∞, exponentially decreasing to zero as |x| → ∞, that blow up in finite time.

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 268  شماره 

صفحات  -

تاریخ انتشار 2015